一点文学 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

反重力性态研究中心发布的成果太过于高端,力场强度已经达到了十几倍率,还发布了一大堆的升阶元素成果,已经让其他的机构完全看不懂了。

格鲁姆湖计划项目组是这样。

国际湮灭理论组织也是这样。

当面对和反重力性态研究中心的竞争时,罗纳德-诺兰只感到非常的绝望,比尔-布莱恩干脆就放弃了竞争,他们只想着能提升自己的技术,能拉到经费继续做研究就可以了。

这就是因为差距太大了。

当差距不是很大,还能看到对手背影的时候,就会有斗志去做认真做研究,希望能实现赶超。

差距太大,就会让人绝望。

问题就在于,格鲁姆湖计划项目组的直接竞争对手就是反重力性态研究中心,他们想放弃竞争都不可能。

面对媒体的表述,也证明了格鲁姆湖计划项目组的尴尬。

在格鲁姆湖计划刚刚确立的时候,他们面对媒体的表述都是‘赶超’反重力形态研究中心。

后来就变成了‘追赶’。

在后来一直到现在,他们根本不会谈反重力性态研究中心,就只是谈自己的研究了。

因为对手,已经看不懂了。

罗纳德-诺兰召集了项目组的其他负责人,一起针对‘十几倍率、五种升阶元素’的成果讨论上,他们甚至无法想象王浩团队在做什么研究。

“那可能不只是提升湮灭力场。”

“他们能做的研究方向太多了,有了那么多的新发现,简直不可想象。”

“我相信他们的设备肯定和我们不一样,基础技术上都已经不同,否则不可能有这么大的差距。”

“单单是大批量的制造磁化材料,就不可能是现在的技术……”

“……”

他们的判断是正确的。

现在王浩关注的研究,即便是公开的说出来,他们也没有办法去模仿,因为他们没有基础材料。

王浩最关注的是沈会明团队的研究。

在提供了很多种升阶材料后,沈会明正带领团队研究主动制造各种频率一阶波的技术,而研究的基础就是各类的升级材料,未来元素材料,以及对应制造出来的合金、化合材料等等。

这些材料是其他机构得不到的。

沈会明团队的研究目标,是希望能以简单的方法制造出各类一阶波。

他们之前制造一阶波的方法是以激发辐射一阶材料的方式进行的,而目前最简单的是利用‘棕金’反射一阶波特性,但反射来制作一阶波有其局限性,依旧不是常规的制造方法。

正常来说,电磁波的制造再容易不过。

电磁波之所以叫电磁波,因为常规就是利用电磁特性制造出来的,但同样的方法根本无法制造出一阶波。

沈会明团队的研究还是非常重要的。

如果能靠简单方法制造各类一阶波,就可以把一阶波技术大量进行应用,而不仅限于实验室以及高端领域。

在关注沈会明团队研究的过程中,王浩倒是听到了和一阶波有关的消息,是核物理工程团队带来的。

他们进行了一阶氘氘聚变的爆破实验。

在进行现场的数据验算统计之后,工程组发现一阶氘氘聚变的亮度和能量释放强度不成比例。

这个项目的负责人是钱晋。

他提交的报告上写道,“我们发现爆破的亮度远低于能量释放强度,疑似有大量其他能量被释放,却没有统计到。”

王浩仔细看了报告以后,就找钱晋要了更详细的数据,随后确定了一阶氘氘聚变释放出了大量的一阶波。

“你们所检测到的亮度,就只是一阶波释放伴随的常规光波。”

“沈会明团队的研究表明,一阶波传导过程中,会逸散出常规波,而逸散的常规波能量总和,比一阶波的能量级数弱很多。”

“现在还没有具体研究数据,但结论是不会错的。”

钱晋的核工程团队的研究不止如此,他们还在实验室环境下得出了两个非常重要的数据。

一个是一阶氘氘聚变过程中,反应释放的能量强度--30MeV,误差范围在2MeV区间内。

这个数据是相当惊人的。

在几种核聚变反应中,氘氚聚变是最常归的反应方式,释放出的能量是17.6MeV。

氘氘聚变,被称为最完美的聚变反应,因为反应没有任何的污染,是真正的清洁能源,但相对于氘氚聚变来说,氘氘聚变需求的环境苛刻,释放的能量相对较小,大约在14MeV左右。

一阶氘氘聚变比常规释放的能量增加了一倍还要多,就会更适合作为核聚变的原材料。

一阶氘氘聚变是否‘清洁’,还要继续研究论证,毕竟一阶氘元素以及反应生产的一阶氦元素,是否对环境有危害还是个未知数。

第二个重要数据就是反应截面了。

他们通过实验证明一阶氘氘聚变的反应截面,和常规氘氘聚变是一样的,依旧只有100毫巴。

这是个好消息。

氘氘之所很难发生聚变反应,就是因为截面远低于氘氚聚变,后者的反应截面高达5巴,而氘氘反应只有100毫巴,相差高达五十倍之巨。

但是,有F射线技术进行点火,反应设备内部也能保持高温,就能让氘氘聚变持续下去,反应截面小反倒是优势了,截面小也就意味着反应可控性高,反应持续时间就会非常长,而不是快速爆发结束。

本小章还未完~.~,请点击下一页继续阅读后面精彩内容!

喜欢从大学讲师到首席院士请大家收藏:(www.1dwx.net)从大学讲师到首席院士一点文学更新速度全网最快。

一点文学推荐阅读: 是你们逼我成巨星的完美世界:从乱古中期开始我曾在型月世界造了个异闻带养成系男神:听劝后,我成了顶流重生空间小悍女NBA:我真的只想当个二当家呀神奇宝贝:我成立了火箭队去相亲吧爸爸成为怪谈就算成功我在末世捡碎片紧急公关!唐先生他又欲擒故纵了聊斋地仙斗罗:剑宗小师妹在武魂殿当圣女宗门里除了我都是卧底玄幻:无限复制,反派圣子杀疯了我才不会恋爱呢打爆神诡世界诸天从流月城开始美食从神级灌汤包开始过气武林高手重生三十年前7号基地只有我能看见的魔女同学我的卡牌无限词条美娱1992全球轮回:我能模拟轮回世界狐瞳我的经验条大有问题希望你对修仙也是这个态度我的黑科技游戏具现了斗罗之我收走了冰火两仪眼全球灾难:签到就变强从太平要术开始原神之我能刷阅历点末日将至:我用科技模拟武功斗破之平凡人生直播爆红后,崽成了全星际团宠世子爷她不可能是女的不一样的游戏系男神诡秘:深渊之王空降热搜!退圈后她成玄门大佬我被困在惊悚游戏一百年文娱教父从练习生开始被赶回乡下后,假千金种田成团宠我的人生可以无限修改让你钓鱼,你钓起了核潜艇?斗破:拍卖万倍返还,我无敌了那年风雪凉大医无疆我的黑科技图书馆玄幻:我能查看人生剧本
一点文学搜藏榜: 灵境行者我只是个路过的圣堂武士我可以兑换悟性终极世界:开局盘点潜力榜神豪:获得无限赔偿后,我暴富了我以魂砚觅仙道反派魔尊的自我攻略龙族世界里的猎人全家穿成恶毒反派,靠赚功德改命我的未婚妻是女驸马穿越四代波风水门之我叫永带妹大佬竟如此谨慎重回九零搞事业首次穿越撞上氢弹是否搞错了什么纯阳小道童从庆余年开始日光诸天锦鲤小农娘,卜卦带娃虐渣渣重生后都是她们主动的我,星空战魂加入聊天群厄运支配神满朝奸臣,你让朕怎么当千古一帝现实长生:从太极拳开始加点统治三界从一间扎纸店开始这才是中场大师!一人:功法全靠小猫咪带给我浪迹诸天的灵卡师从动漫开始攻略恶女命星不朽替嫁后我做了萌宝的后妈我有一块两界玉斗破之人生模拟器我穿越进了赛博朋克世界全职法师:阴灭阳生美漫:开局祖宗人,一拳打爆美队诸天问道:从永生开始红魔曼联顶框六边形腰王回到80,从春晚开始精灵:开局谋划闪光巨金怪原神从胡桃开始科普诸天宝物,开局十二符咒聊斋之斩妖除魔洪荒之东海三太子从魔神战争归来的鸣人文娱:从变形记开始的大文豪新婚夜,植物人老公突然抱住我!人在洪荒:开局收尸混沌神魔剑鼎仙途超凡生物体验游戏星辰大海从小作坊开始人在斗罗:武魂黑暗千仞雪
一点文学最新小说: 迷雾之上我的金融科技帝国北朝帝业从呆毛王开始公开处刑离谱!谁把校花塞我后备箱里了?凡人:掩月宗的日常我能提取万物属性点我在仙界富甲一方大明英华皇宫里的妖精好上头百世飞升四合院之饮食男女重生八八从木匠开始我在春秋不当王从科西嘉到第四罗马民国之我能无限转职江教授宠坏的小祖宗甜翻了于是我去了斗罗我组建了最强剑客集团汉末召唤之无敌天下穿越万界:神功自动满级重筑2005红楼贾兰:今晚省亲,要不要逃?污浊妄构期待在异世界法海穿越唐三藏黑暗逐光者我被霍格沃茨开除了?明末逐鹿天下仙子不想理你惊惧梦魇游戏:巅峰屠皇从柯南开始重新做人重归黄金年代偷星家的假面骑士空我四合院之赤脚医生东京泡沫人生神秘复苏和偏执大佬上综艺后我靠摆烂爆红遮天:我是白帝穿越吧,诸天火爆娱乐圈,你管这叫一点点爱好顶级悟性:从基础拳法开始大国院士战锤:以灰烬之名山河献福德天官恋爱从游戏情缘开始诡综从港城开始游戏万界之群员全是我自己开局金风细雨楼主,一刀惊天下